Методы наблюдения метеоров
Визуальные наблюдения метеоров невооруженным глазом, являющиеся самым древним и самым дешевым методом наблюдений, оставили глубокий след в истории метеорной астрономии. Их доступность и простота сыграли значительную роль в накоплении обширных наблюдательных данных. На основе этих данных были открыты метеорные потоки, определены орбиты многих метеороидов, обнаружена связь метеорных роев с кометами. В настоящее время визуальный метод сохраняет некоторое научное значение, но в силу повсеместного развития более точных инструментальных методов в основном применяется лишь астрономами-любителями.
Наблюдения слабых метеоров, недоступных невооруженному глазу, астрономы проводили с помощью бинокуляров и небольших телескопов еще в конце прошлого века. Правда, из-за малого поля зрения этих инструментов вероятность обнаружения даже очень слабого метеора (а их всегда во много раз больше, чем ярких) невелика, что делает телескопические наблюдения очень утомительными. Но благодаря многолетним усилиям наблюдателей-энтузиастов все-таки удалось получить определенные сведения о численности слабых метеоров и их радиантах.
На смену визуальным методам пришли фотографические. Опыты применения фотографии в астрономии были начаты еще в середине XIX века. Из-за недостаточной чувствительности фотоэмульсий первыми сфотографированными объектами были Солнце, Луна, планеты и несколько наиболее ярких звезд. Но уже в 1882 году английскому астроному Д. Гиллу удалось получить несколько фотопластинок, буквально усеянных изображениями звезд. Вдохновленные удачей Д. Гилла, братья Поль и Проспер Анри в Париже в том же году с успехом использовали фотографический метод для составления звездных карт,_ положив начало звездной фотографии.
Через три года Л. Вейник в Праге сфотографировал первый метеор. Надо сказать, что способ фотографирования метеоров отличается от фотографирования других астрономических объектов. Когда вы исследуете галактику, звезду, комету или астероид, вы наводите на этот объект телескоп и фотографируете его столько времени, сколько вам это необходимо. При желании вы можете многократно повторять эту процедуру. Фотографировать таким образом метеоры не удается, поскольку неизвестно, в какой момент и в какой области небесной сферы может на мгновение появиться относительно яркий метеор (правда, случайные фотографии метеоров получались в различных обсерваториях мира, но научного значения они не имели). Необходимо направить в небо камеру с достаточно широким полем зрения, открыв затвор на все время наблюдений.
Даже приблизительное понимание природы небесных объектов невозможно без умения определять расстояния до них. Лишь знание расстояний (но не только их) до тел, порождающих метеоры, позволяет посчитать, сколько они излучают энергии и каковы их массы. Поэтому еще в 1893 году сотрудник Йельской обсерватории в США У. Элкин установил по нескольку камер в двух пунктах, разделенных расстоянием 3—5 км, с целью определить методом триангуляции расстояния до тел, порождающих метеоры, и их высоты над поверхностью Земли. На одном из пунктов фотографирование проводилось через вращающийся «пропеллер»-обтюратор, сделанный из велосипедного колеса. При вращении обтюратор перекрывал объективы камер с угловой скоростью от 6 до 10 об/с, и на фотоснимке изображение получалось в виде прерывистой линии, что позволяло определить скорость метеороида.
Эта работа продолжалась до 1909 года, однако результаты ее были частично опубликованы лишь в 1937 году. В 1912 году аналогичные работы были начаты в Великобритании Ф. Линдеманом и М. Добсоном, но продолжались недолго, не дав существенных результатов. У нас в стране первые фотографические наблюдения с двух пунктов начались в 1932 году в Москве под руководством В. В. Федынского. Они проводились на двух камерах, расположенных на расстоянии 2 км друг от друга. Перед объективом одной из них был установлен обтюратор.
Все эти пионерские работы продемонстрировали жизнеспособность фотографических методов наблюдения. В 1936 году в Гарвардской обсерватории Ф. Уипл начал систематические наблюдения метеоров на двух камерах с полем зрения 60X60°, удаленных друг от друга на 38 км. Несмотря на то что количество сфотографированных метеоров было еще невелико, точность метода благодаря увеличению базиса достигла высокой степени. Ф. Уиплу и его сотрудникам удалось определить высоты, скорости и орбиты метеороидов, сделать первые оценки их масс и получить значения плотности атмосферы на высотах 80—100 км.
Следующим шагом в развитии фотографического метода явилось создание ряда комплексов из нескольких камер, названных метеорными патрулями. В 1938 году первый метеорный патруль, состоящий ив четырех агрегатов по семь камер каждый, был создан в Советском Союзе. В его разработке активно участвовали С. В. Орлов, В. В. Федынский и И. С. Астапович. Патруль, изготовленный в Москве в Государственном астрономическом институте им. П. К. Штернберга, был установлен на астрономической обсерватории в Душанбе, которая славится рекордным количеством ясных ночей.
Любую камеру метеорного патруля можно превратить в спектрограф, если поместить перед ее объективом стеклянную призму или дифракционную решетку. Но метеорная спектрография при значительном сходстве со звездной имеет ряд особенностей, затрудняющих получение хороших спектрограмм. При фотографировании спектров звезд телескоп, оснащенный призмой или решеткой, наводится на звезду и в дальнейшем «следит» за ней с помощью часового механизма. Таким образом звезда может экспонироваться довольно долгое время.
Метеор существует в течение долей секунды, и никакими ухищрениями вы не заставите его появиться вновь. Кроме того, хороший спектр получится только в том случае, если направление движения метеора составит значительный угол (прямой в идеальном случае) с направлением дисперсии решетки. В противном случае спектр не получится, поскольку все линии сольются в одну прямую полосу.
К настоящему времени получено несколько тысяч спектрограмм; в подавляющем большинстве качество их недостаточно высокое, поскольку они имеют небольшое разрешение (многие линии сливаются друг с другом). Разумеется, бывают и замечательные исключения. Так, один из спектров, полученный чехословацким астрономом 3. Цеплехой, содержит более 1000 линий.
Уже отмечалось, что быстрое движение метеоров затрудняет применение классических наблюдений, хорошо разработанных в астрофизике. Долго, например, не удавалось получить истинный фотопортрет метеора; мешало его быстрое движение. Представьте себе, что вы сфотографировали мчащегося мимо вас автогонщика. Глядя на полученный снимок в виде смазанной полосы, вы, вероятно, сможете определить, по какой дороге ехал гонщик, в каком направлении, может быть, даже с какой скоростью. Но вы абсолютно ничего не скажете о том, как он выглядел, во что был одет, автомобилем какой марки управлял. Чтобы получить эту информацию, вам следовало либо остановить гонщика, что невозможно, либо сфотографировать его с такой короткой экспозицией, чтобы на снимке он оказался неподвижным. Долгое время исследователи метеоров находились в аналогичной ситуации: попытки получить фотопортрет метеора оканчивались неудачей.
В дальнейшем перед объективами восьми камер были помещены дифракционные решетки и получен первый мгновенный спектр метеора...
Еще в конце 20-х — начале 30-х годов в СССР, США и Японии было обнаружено, что на распространение радиоволн влияют эпизодически возникающие очаги ионизации, порождаемые пролетами метеоропдов. Действительно, при полете метеороида в атмосфере Земли испарившиеся атомы метеорного вещества, сталкиваясь с молекулами воздуха, теряют электроны. На всем протяжении атмосферной траектории метеора создается ионизационный след, содержащий большое количество свободных электронов. При достаточной концентрации электронов радиоволна, посланная с Земли радиолокатором, отразится от следа, как от миниатюрной ионосферы или твердого тела.
Во время второй мировой войны мощные радиолокаторы в Великобритании использовались для дальнего обнаружения фашистских самолетов и ракет «Фау-2». На первых порах персонал, обслуживавший систему, неоднократно попадал впросак. Локаторы регистрировали отражения от движущейся цели, поднималась тревога, приводились в боевую готовность орудия, с аэродромов взлетали истребители, но ни ракет, ни вражеских самолетов в небе не оказывалось. Причина таких отражений продолжала оставаться загадочной, пока однажды момент отражения радиосигнала не совпал с появлением болида. Ситуация прояснилась, и работники радиолокационной службы разработали методику распознавания ложных сигналов.
После окончания войны определенный период времени средства противовоздушной обороны продолжали работать и «между делом» регистрировать отражения от метеорных следов. Было установлено, что подавляющее количество радиоотражений возникает при абсолютно чистом небе, когда совершенно отсутствуют метеоры, которые можно сфотографировать или увидеть визуально. Это могло означать, что радиолокаторы способны регистрировать значительно более слабые метеоры, порождаемые мелкими метеорными частицами. При этом число радиометеоров намного превышало число оптически наблюдаемых метеоров.
Понятно, что этот факт, а также возможность вести радионаблюдения независимо от времени суток (и днем, и ночью) и состояния погоды (и в дождь, и в снег) обещали большие перспективы. Поэтому не вызывает удивления, что во многих странах развитие радиолокационных наблюдений метеоров приняло очень активный характер. В Советском Союзе серьезные успехи достигнуты в Казани, Харькове, Томске, Обнинске, Душанбе, Киеве.
Характерно, что ионизационный след, образованный метеором, разрушается не мгновенно и электроны в свободном состоянии в достаточно большой концентрации могут существовать от нескольких секунд до десятков и сотен секунд, т. е. радиоотражения от метеорного следа продолжаются и после того, как метеорное тело полностью испарилось. Этим немедленно воспользовались исследователи верхней атмосферы. Дело в том, что метеорные следы не остаются неподвижными, а дрейфуют под воздействием верхнеатмосферных ветров и поэтому являются прекрасными источниками информации о скорости и направлениях воздушных течений на высотах 60— 120 километров. Этот геофизический аспект радиолокационных наблюдений метеорных следов чрезвычайно сильно стимулировал развитие целой сети метеорных радиолокационных станций на Земле. Как правило, с помощью одной и той же станции параллельно решаются и задачи метеорной астрономии, и геофизические задачи.
Хотя радиолокационный метод наблюдений метеоров позволил получить много сведений о мелких метеорных телах, в особенности об их количестве, его нельзя считать идеальным средством исследования. Во-первых, он уступает фотографическому методу по точности определения различных характеристик метеороидов, во-вторых, не позволяет получать данные о химическом составе мелких метеорных частиц (а это очень важно), в-третьих, все-таки не дает наглядной картины самого метеорного явления, что ограничивает возможности детального исследования индивидуальных метеороидов.
В частности, большое количество косвенных данных указывает на то, что мелкие метеороиды не просто испаряются в атмосфере, а подвергаются и механическому дроблению. Исследовать с достаточной определенностью этот вопрос на основе радионаблюдений метеоров не представляется возможным. Поэтому были приняты попытки расширить диапазон оптических наблюдений в область очень слабых метеороидов.
Читайте в рубрике «Mетеоры и метеориты»: |
Citroen в лизинг
Citroen в лизинг для юридических лиц и ИП.
www.stone-xxi.ru